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Develop a simulation platform for studying the for-

mation of optical frequency combs in ring resonators  

PROJECT  

 

KEY WORDS: 

Micro resonator ; frequency combs; Simulation ; Calculation; Comsol; Matlab 

ABSTRCT    : 

The objective of this project is to develop a simulation platform for studying the formation of optical frequency combs 

in ring resonators. The project entails two complementary tasks: 1) calculating the dispersion profile in a given wave-

guide geometry; and 2) solving the nonlinear dynamics of Kerr frequency combs.  
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Figure 1. (a) Electric field distribution obtained by mode analysis. Waveguide parameters are taken from 
Ref. [10]. (b) Second-order dispersion  profile. (c) Bird view of the waveguide used in simulation. The bend-
ing radius of the waveguide is large, so it is approximated as a straight waveguide. As such, the geometry is 
constructed in in “2D” instead of “2D symmetric.”  in ‘2D symmetric’, the simulation is conducting in a three
-dimensional cylindrical coordinate. COMSOL can automatically form the whole geometry of a symmetric 
object by its cross section one draw in the graph window.) 
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Calculating the dispersion profiles for bended and micro-ring resonator 

Dispersion also manifests itself as a temporal effect, known as group velocity dispersion (GVD). GVD causes 
a short pulse of light to spread in the time domain because different frequency components travel at different 
group velocities. GVD is defined as   

 

 

 

where        is the wavelength of the light and          is the effective refractive index that has accounted for both 
the material and the waveguide-geometric contributions. For a waveguide mode with a propagation constant    

 dependent angular frequency        GVD is defined as: 

                                          

 

Where       is the wavelength in the vacuum. 
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 Solving frequency-combs dynamics in the frequency domain 

In the frequency domain, comb dynamics are described by a set of time-dependent coupling mode equations
[1], which are a function of the main characteristics of the cavity, namely, the Kerr nonlinearity, absorption, 
coupling losses, and cavity dispersion including both the geometrical and material contribution. 
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In order to solve the dynamics of the frequency combs in terms of the coupled mode equations, one needs to 
first convert the entire set of equations into MATLAB code. For example, to calculate frequency combs com-
prised of 201 modes, one has to work with 201 equations. A paramount step would be selecting the effective 
four-wave mixing modes and store the combinations of these coupling modes in a vector, whose element will 
later be used as the indices of the modes. After constructing the set of equations, one can use a fourth-order 
Runge-Kutta method to obtain the solution, with the Initial conditions specified by                 and  (0) 0= lA
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Figure 2. Illustration of the split-step Fourier al-

 The Lugiato-Lefever equation (LLE)  

The dynamic of Kerr frequency comb is governed by an externally driven and damped nonlinear 

Schr dinger (NLS) equation in the time-domain, known as the Lugiato-Lefever equation (LLE)[2]. 

 

 

The general approach to solve this equation, is called the split-step Fourier method, is more com-

monly used, as it provides insights into the dynamics of frequency-combs formation. 
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 Cavity soliton  

Cavity solitons are potential information carriers in all-optical memories. The formation of cavity 
solitons is tightly associated with pump power and frequency.  From an intuitive perspective, the for-
mation of a single soliton requires the balance between dispersion and Kerr nonlinearity, as well as 
the balance between the four-wave mixing gain and loss. 

Figure 3. (a) Time domain intracavity field, which is a soliton. Cavity parameters are taken from Ref. 
[3] (b) Frequency comb spectrum. It is smooth and has a DW at 2156 nm. (c) intracavity power 
changes with evolving time. 
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Using a tensor notation, one can convert the coupling term into: 

                    

  

 

where        .The right-hand side of this expression can be seen as two convolutions in the form of auto-
correlations. As such, it can be derived by calculating the product in the conjugate domain followed by an in-
verse Fourier transform:  
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After doing the Fourier transform, the coupling part comprised of thousands of terms is reduce to a single 
term. Hence, the Fourier-transform technique substantially reduces the computational complexity. 

The frequency-domain method is very time consuming and therefore requires a high  -performance computer. 
Fortunately, an accelerated numerical method based on the Fourier transform of the coupling term can be 
used .To show so, consider the coupled mode equation expressed as: 

(a) 

(b) (c) 

 . Conclusion 

During my stay in University of Arizona, I successfully built the simulation platform for micro-
resonator based optical frequency combs, including using Comsol to calculate dispersion profile and 
using MATLAB to solve comb dynamics in both frequency and time domain. 
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