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The objective of this project is to develop a simulation platform for studying the formation of optical frequency combs
in ring resonators. The project entails two complementary tasks: 1) calculating the dispersion profile in a given wave-
guide geometry; and 2) solving the nonlinear dynamics of Kerr frequency combs.

1. Calculating the dispersion profiles for bended and micro-ring resonator

Dispersion also manifests itself as a temporal effect, known as group velocity dispersion (GVD). GVD causes
~a short pulse of light to spread in the time domain because different frequency components travel at different
group velocities. GVD 1s defined as

A d’n
(i "

~where A 1s the wavelength of the light and 7.~ 1s the effective refractive index that has accounted for both
the material and the waveguide-geometric contributions. For a waveguide mode with a propagation constant
,B dependent angular frequency o(8) GVD i1s defined as:

_ 2re d*p

) =
’ A5 da’ (2)

Where A is the wavelength in the vacuum.
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Figure 1. (a) Electric field distribution obtained by mode analysis. Waveguide parameters are taken from
Ref. [10]. (b) Second-order dispersion profile. (¢) Bird view of the waveguide used 1n simulation. The bend-
ing radius of the waveguide 1s large, so 1t is approximated as a straight waveguide. As such, the geometry is
constructed 1n 1n “2D” instead of “2D symmetric.” 1n ‘2D symmetric’, the simulation 1s conducting 1n a three
-dimensional cylindrical coordinate. COMSOL can automatically form the whole geometry of a symmetric
object by its cross section one draw 1n the graph window.)

2. Solving frequency-combs dynamics in the frequency domain

In the frequency domain, comb dynamics are described by a set of time-dependent coupling mode equations
~ [1], which are a function of the main characteristics of the cavity, namely, the Kerr nonlinearity, absorption,
- coupling losses, and cavity dispersion including both the geometrical and material contribution.
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In order to solve the dynamics of the frequency combs in terms of the coupled mode equations, one needs to
~ first convert the entire set of equations into MATLAB code. For example, to calculate frequency combs com-
~ prised of 201 modes, one has to work with 201 equations. A paramount step would be selecting the effective
~ four-wave mixing modes and store the combinations of these coupling modes in a vector, whose element will
~ later be used as the indices of the modes. After constructing the set of equations, one can use a fourth-order
~ Runge-Kutta method to obtain the solution, with the Initial conditions specified by (4 (0)) =0 and

( 4,(0) P =%

The frequency-domain method is very time consuming and therefore requires a high -performance computer.
~ Fortunately, an accelerated numerical method based on the Fourier transform of the coupling term can be
~ used .To show so, consider the coupled mode equation expressed as:
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- Using a tensor notation, one can convert the coupling term into:

5 Aud 5 Ay = Auisn A 5 Ay = Ausr A o Ay (5)
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where K=/~ The right-hand side of this expression can be seen as two convolutions in the form of auto-
~ correlations. As such, it can be derived by calculating the product in the conjugate domain followed by an in-
- verse Fourier transtorm:

A/HkA ik Ap = F [| aj | a;l Z(| dj | aj )e(lzﬂm)/N (6)

After doing the Fourier transform, the coupling part comprlsed of thousands of terms 1s reduce to a single
term. Hence, the Fourier-transform technique substantially reduces the computational complexity.

5. The Lugiato-Lefever equation (LLE)

The dynamic of Kerr frequency comb 1s governed by an externally driven and damped nonlinear
Schrsdinger (NLS) equation in the time-domain, known as the Lugiato-Lefever equation (LLE)[2].

t OE(t,7)

R

=(~a —iS)E+iyL|E| E+zLZ’Bk(z )E+\/_E (7)

T k>2

The general approach to solve this equation, i1s called the split-step Fourier method, 1s more com-
monly used, as 1t provides insights into the dynamics of frequency-combs formation.
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a, b, c, f are constant

4. Cavity soliton

Cavity solitons are potential information carriers in all-optical memories. The formation of cavity
solitons is tightly associated with pump power and frequency. From an intuitive perspective, the for-
mation of a single soliton requires the balance between dispersion and Kerr nonlinearity, as well as

the balance between the four-wave mixing gain and loss. |
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Figure 3. (a) Time domain intracavity field, which 1s a soliton. Cavity parameters are taken from Ref.
[3] (b) Frequency comb spectrum. It 1s smooth and has a DW at 2156 nm. (¢) intracavity power
changes with evolving time.

5 o Conclusion

During my stay in University of Arizona, I successfully built the simulation platform for mioroé-
resonator based optical frequency combs, 1nclud1ng using Comsol to calculate dispersion profile and
using MATLAB to solve comb dynamics in both frequency and time domain. |
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